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ABSTRACT

Using the first and the second derivative of flutter velocity

with respect to the parameters, the velocity hypersurface is. made

quadratic. This greatly simplifies the numerical procedure developed

for determining the values of the design parameters such that a

specified flutter velocity constraint is satisfied and the total

structural mass is near a relative minimum. A search procedure pre-

sented utilizes two gradient search methods and a gradient projection

method. The procedure is applied to the design of a box beam, using

finite-elemen.t representation.

The results of the search procedure applied to a box beam indicate

that the procedure developed yields substantial design improvement

satisfying the specified constraint and does converge to near a local

optimum.

iv
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CHAPTER I

INTRODUCTION

In recent years numerical programming techniques hav,egrown very

relevant in industrial, scientific and military design. This growth

has been greatly aided by advances in computer techniques and matrix

methods of structural analysis. It has become feasible to apply

optimization techniques to design common but complex structures,

although most of the development up to this time has been at a

research level.

One of the main objectives of optimum design aims at replacing

intuitive drafting of a structure by analytical methods so that it may

comply with strength conditions. Thus, designing without the theory

of optimum design consists of formulation of assumptions and their

verification by calculations, whereas the optimum design makes it

possible to determine the exact form directly on the basis of given

strength conditions.

The major problem with the above mentioned analysis is that, it

is time consuming. Most approaches to optimum design are based on

iterative methods, and the complex structure has to be analyzed at

each iteration to check the various design requirements before pro-

ceeding to-the next stage of optimum design cycle. This leads us to

the following two criteria for optimum design. 1) It is essential

that the method of analysis be a rapid one. 2) The number of

redesign'cycles required to arrive at an optimum should be as small

as possible.



OBJECTIVE

Keeping the above two criteria in mind, in this report the

author's aim is to modify an existing optimization scheme to mini-

mize the mass of a structure subject to flutter velocity constraints,

as given in (1).

For each iterative cycle an assumed quadratic equation for

velocity hypersurface is used. A relatively simple three bay box

beam is selected to illustrate the application. The box beam has

enough design parameters and degrees of freedom to make the problem

meaningful, and if successful can be logically extended to more

complicated structures.

In stating the mathematical programming problem it will be

assumed that the geometry of the aircraft wing has been fixed in

advance. Let m be the mass of the wing, and Dl, D2, ..., Dn be the

design parameters, representing cross sectional areas, plate thick-

nesses, diameters squared, etc., of the wing. It can be seen that

the mass m is a function of these design parameters, which are selected

so that the mass m is a linear function of these parameters. Now n

side constraints can be placed on these parameters so that they are

bounded. Letting V denote the required minimum flutter velocity,

the problem can be expressed as follows:

Minimize m = m (Di, D , ... , Dp) (1-1)

Subject to

D O. oD, i = i, P (1-2)
I I I



and

v >,V (1-3)

where v is the flutter velocity corresponding to the design parameters

D , D2 , ... D . The superscripts I and u correspond to the lower and

upper bounds, respectively. v though a function of deisgn parameters,

is in general nonlinear.



CHAPTER- II

FLUTTER

Flutter is defined as an aeroelastic self excited vibration in

which the external source of energy is the air stream. The airstream

feeds energy into the system by virtue of its position or configuration

at least as rapidly as it is dissipated by damping (2., p. 192).

To clarify the above statement let us place an airplane wing in

a vacuum. The wing, if disturbed from its equilibrium position, would

vibrate in its normal modes. These vibration, because of structural

damping, would slowly die out. If however, the wing is moving through

air with some constant forward velocity v, and is suddenly disturbed,

as when a gust of wind strikes the wing, then the subsequent motion may

be such that the amplitude of vibration will tend to (a) decrease due to

damping if the air velocity relative to the wing is less than the

critical speed, (b) remain constant, at the critical air speed (also

known as the flutter speed of the wing), or (c) increase for a speed

higher than the critical air speed, which may at times cause$istruc-

tion of the structure. Because it is easier mathematically to describe

the aerodynamic loads due to simple harmonic motion, theoretical

flutter analysis consists of assuming in advance that all dependent

iwt
displacement variables at flutter speed are proportional to e , where

w is the frequency (real) and i = 1--1, and then finding combinations of

velocity v and frequency w for which this actually occurs.

A simple example of flutter as given in Bisplinghoff et. al.

(3, p. 528) follows. Consider the case of a rigid, symmetrical airfoil
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hinged at its leading edge such that it is elastically restrained

from rotating about that edge due to the torsional spring with a

spring constant equal to K ft-lb/rad. This is shown in Figure 1.

Let I = the moment of inertia of the airfoil about the leading edge

M = the aerodynamic moment per unit span due to a(t)
y

K = the torsional stiffness of the restraint

The equation of motion for this single-degree-of-freedom system is

Ia 2(t) + K a(t) = M (2-1)a dt2 a y

The flutter condition is solved for by assuming as a solution

a(t) = a e iwt  (2-2)

where a = constant angular amplitude displacement.

The natural torsional frequency we is given by

K

2 a (2-3)a =

Using equations (2-2) and (2-3), and dividing equation (2-1) by Tpb 4 ,

produces

a 4+ 0

wpb w pb w a

where b = semi-chord,

p = density of the air,

hence

.- I - m = 0 (2-4)
rpb



K = torsional spring constant

b = semichord

oc = angle of attack

v = velocity of airstream

Figure 1. Rigid, Symetrical Airfoil Flutter

Restrained about its Leadi.ng Edge.
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M
where m = 4 2 represents the dimensionless aerodynamic

rpb w a
coefficient. For a thin airfoil performing small simple harmonic

motion in two-dimensional incompressible flow, my, is given by

(1, p. 529)

m =M (L + + L
y2 ) h

where Ma, La, and Lh are complex coefficients which are functions of

reduced frequency k = . Equation (2-4) can be separated into real

and imaginary parts. Thus

Real {m} = (2-5a)
y pb

and

Imaginary {m = 0. (2-5b)

Thus, the flutter occurs at that value of reduced frequency k which just

makes the out-of-phase component of the aerodynamic moment vanish,

provided the corresponding in-phase part is of such magnitude that

equation (2-5a) yields a real flutter frequency w (J, p. 529).

To see how the dynamic instability is caused by the energy added

by the airstream, consider the work done by the airstream on the simple

airfoil of Figure I as it undergoes simple harmonic motion. Since the

physical quantities are represented by the real parts of the complex

representation,

da
dW= Real {M }x Real - dt

y ., dt



where da = differential increment in a(t)

and dW = incremental work due to da.

Therefore,. the total work done during one cycle is

2T
da

W = Real {M }',x Real _ dt. (2-6)

42
Now M = pb m y; my is complex

= Tpbw 2 (myR + imyl) a e it

where the subscripts R and I denote real and imaginary parts,

respectively.

Let = tan
myR  '

then

4 2  2 2 e i  oe
M = 1pb ( myR + my1 2) e' a0ebt.

Hence

Real {M } pb W( myR 2 + m2) Cos(t + )

= C Cos(wt - 4) (2-7)

where C = npb 4 (Jmy 2 + my 2) o.

da iwt
Now, - iw e

dt o

= a (-Sin wt + i Cos at),
o

therefore,

Real = - a w Sin wt. (2-8)
dt o
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Substituting equations (2-7) and (2-8) in equation (2-6)

27

W = -C ca w Cos (wt + p) Sin wt dt

o

2x
Ca W --

C 0 [Sin (2wt + i) - Sin p] dt,
2

o

then

W = C a T Sin i
o

or

W = ire Imaginary {-j-4 . (2-9)

M
Since is independent of time, the sign of equation (2-9) depends

iwte
upon the aerodynamic coefficients Ma , La ,and Lh. A negative sign

would mean that the airstream is extracting work from the elastic

system, thus providing aerodynamic damping. A positive sign would

mean that the airstream is adding energy to the system and would

cause the airfoil in this simple example to flutter.



CHAPTER III

WORK BY OTHERS

Although the technique for analytical prediction of aeroelastic

phenomena has been available for a long time, to date there have been

relatively few published works dealing with optimization under aero-

elastic constraints, since most of the work in optimization has dealt

with the conventional conditions of strength, stiffness and stability.

Rudisill and Bhatia (1) have developed a numerical procedure for

determining the values of the design parameters such that a specified

flutter velocity constraint is satisfied and the total structural mass

is near a relative minimum. The search procedure utilized two

gradient search methods and a gradient projection method. In the

above procedure substantial design improvement was made but convergence

to an optimum was not obtained in a reasonable computer execution

time. Since then Rudisill and Bhatia (4) have obtained an analytical

solution for the second partial derivatives of the eigenvalues of the

flutter equation along with the equation for finding the second partial

derivatives of a flutter velocity of an aircraft sturcture with respect

to the structural parameters. Using these partial derivatives in com-

puting the step size used in the projected gradient search along a

constant mass hyperplane has helped in cutting down on the number of

redesign cycles to arrive at the optimum.

Cooper (5) in his report, has attempted a direct method of

solution for the flutter velocity. He also has applied his method

to the optimization of a cantilevered box beam for minimum mass due
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to a flutter velocity constraint. His method of solution required

a plot of the imaginary part of the eigenvalue of the flutter equation

versus the dependent variable of the flutter equation, i.e. velocity

divided by the circular frequency. From this plot the crossover

points on the dependent variable axis are sought. From these points

the lowest or the critical velocity for which the structure will have

divergent oscillations may be calculated. He has simplified his pro-

cedure by fitting a simple quadratic or cubic equation for the

required plots, and has obtained good results.

Siegel (6) within the last year has developed an optimization

method for accurately and rapidly calculating, through a completely

automated digital computer program, the minimum weight spanwise dis-

tribution of an airfoil surface to provide a given required flutter

speed. This program starts by calculating the flutter speed for a

configuration having adequate strength. If the calculated flutter

speed is lower than required an automatically determined increment of

structural material is added to the spanwise location where the strain

energy per unit structural volume in the flutter mode is a maximum.

Using the new structural data the flutter speed is again calculated.

This process is repeated automatically within the computer until the

required flutter speed is attained. This method is thus absolutely

based on the concept that the most efficient structure is one that has

constant strain energy per unit structural volume in the flutter mode.
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In this report the method developed by Rudisill and Bhatia (1,4)

has been extended to include a curve fitting technique for the velocity

hyperplanes and other minor changes to accommodate it have been made :

thus, making the process efficient.



CHAPTER' IV

DESCRIPTION OF OPTIMIZATION PROCEDURE

If stiffness distributions are not properly optimized for

flutter, aircraft structures can become significantly heavier than

necessary. For the objective formulated in Chapter 1, there are

numerous search strategies that could be devised to attempt a solution

to an optimization problem.

The optimization procedures developed here are basically a

gradient search method, the greatest rate of improvement of the func-

tion being found by moving along the gradient. (The derivatives of an

objective function with respect to each of the n parameters are col-

lectively called the gradients of the objective function.)

The present optimization procedure (4) utilizes three well known

gradient search routines. A simplified graphical illustration of their

behavior is shown in Figure 3. In the following three sections the

searches are individually described; later on in this chapter the curve

fitting method for the velocity hyperplane is given.

Before we go into the mathematical derivation, a few important

assumptions are stated.

(i) the search is to be conducted in the P dimensional space of

design parameters D1 , D2, ... , Ip-. The column matrix {D(p)} defines a

design poin.t p in this space which corresponds to a particular

structure configuration such that D. > 0, i = 1, P,

(ii) the flutter velocity is uniquely defined at any point {D}.

Thus, v which is assumed to be a continuous function of {D} is a
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scalar point function. The total mass m.is also a continuous

scalar function of {D}.

Let p and p be two neighboring points defined by {D(p)} and

{D(p*)}, respectively. The scalar distance As between these points is

As I{D(p)} - {D(p*)}I = ( )2 (4-1)
i=l

It is now assumed that the limits of the difference quotients of v

and m as As tends to zero, exist. Thus

Limit v(p") - v(p) = dv
As + 0 As ds '

(4-2)

Limit m(p") - m(p) dm
As - 0 As ds

Equation (4-2) defines the directional derivatives of v and m.

VELOCITY GRADIENT SEARCH

This routine is employed in order to increase the velocity. In

this routine the search moves perpendicular to the velocity contours,

i.e. maximum increase in velocity. The desired velocity is reached in

one or more steps in an iterative fashion.

The maximum rate of change of velocity is given by the normal

derivative and is equal to the absolute value of the gradient vector of

the velocity. It may be expressed as

P 2
dv avjdv (v) •(4-3)
dn j=l j
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A new velocity along a gradient curve corresponding to small design

parameter changes may be approximated by the expression

V + dv An (4-4)
dn

where V and v are the new and old velocities respectively,

and An = As along the normal vector to constant velocity hypersurface

at {D}. The direction cosines of the gradient are

av
3D. AD.

1. = ' i = 1,P. (4-5)1 dv An
dn

Therefore,

av
An

aD.

AD. i = l,P. (4-6)
I dv

dn

From equation (4-4)

An (V - v) (4-7)
dv
dn

Substituting equation (4-3) and (4-7) in equation (4-6)

(V - v) av
D.

AD. i = ,P. (4-8)
. av 2

S(-)
j=l j

Thus the new value of design parameters D. , i = 1, P, are given by

av
(v - v)

D. D. + i = 1,P. (4-9)
i I P av 2

]=1 j

C
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Equation (4-9) will yield approximate values of the design parameters

corresponding to V.

Since the velocity is a nonlinear function of the design parameters,

the true velocity corresponding to the set of design parameters D will

not be equal to V. An iterative procedure may be used to determine the

set of design parameters corresponding to the desired velocity. The

search was programmed such that Di, i = 1, P, in equation (4-8) is

either positive or" zero.

MASS GRADIENT SEARCH

This routine is used in order to reduce the velocity. In this

routine the search moves perpendicular to the constant mass hyperplanes,

i.e. the direction of the maximum rate of decrease in mass. This

process is repeated until the velocity is less than or equal to the

desired velocity.

The total differential of the velocity may be expressed as

P
dv = av dD.. (4-10)

j=l j

The.normal derivative of the total mass m may be expressed by the

equat i on

dm 71m 2 (4-11)
dn jD.

j=1 3j

and the direction cosines of the mass gradient vector are given by

the relation



am
D. AD.

I I = i = 1,P (4-12)
i dm An '

dn

where An = As along the normal vector to constant mass hypersurface at

{D}. Approximating the total differential dv by increment v and

substituting AD. from equation (4-12) in equation (4-10) yields

av am An
aD. aD.
dm
dn

or

S(am) 2 A

ao
An (4-13)

av am

j= a i D

Substituting equation (4-13) into equation (4-12) yields

am v
aD.

AD P1 (4-14)
av am

j=1 Dj aDj

The new set of design parameters {D } can again be computed from

D. = D. + AD.
I I I

It should be noted that Av = V - v.

The mass gradient search is also an iterative procedure like the

velocity gradient search. The search was programmed in such a way that

AD., i = 1, P, in equation (4-14) would be either negative or zero.
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GRADIENT PROJECTION SEARCH

This routine is employed in order to reach a relative maximum

of the velocity while the mass is held constant. The parameters are

varied such that the search proceeds tangent to a constant mass hyper-

surface in the direction of the maximum rate of increase of velocity.

The gradient projection method allows variations of design para-

meters to be taken so as to satisfy the behavior constraints at all

times. The search for an optimum cannot therefore proceed in the

steepest ascent direction, but must always be restricted to movements

satisfying the constraints. Here the velocity v will be maximized

while the total mass m is held constant.

With the aid of the second derivatives of the flutter velocity

with respect to the design parameters, and the projected gradient

search as given in [t], the step size s could be expressed as

P aD.
av J
aD. ds

s j=l (4-15)
P P 2 dD. dD k
E E v j k

j=1 k=l aD. aD k ds ds

dD.
where s--are the direction cosines corresponding to the direction of

the maximum rate of increase of the flutter velocity along a constant

mass hypersurface. These direction cosines [7] are,

dD.
j= (av am (4-16)ds 2X D. I HD)

d o 2A 1 *-- (4-16)
0 j j
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where 2X and XA are given as

n nam av m/ 2 (4-17)
1 =  aD. D. -D .

j=l j j j=l 3

E [av 2 av am 11/2
2X [() +D. (4-18)

o 1 1 . j (8

and m is the total mass of the structure. New parameters may be

computed from the relation

+ av am
S= D. + ( + A ) S/2A (4-19)j j aD. laD. o

J J

If the total mass.is formulated as a linear function of the

design parameters then the search will always be along a constant

mass hyperplane except those times when the side constraints for the

design parameters are encountered. In that case the search might com-

pletely fail, i.e. velocity decreases instead of increasing. When this

is encountered a different approach is used which is described later

on in the computation procedure.

CURVE FITTING FOR VELOCITY

In the optimization procedure developed here, we are trying to

minimize the mass of a structure (aircraft) to satisfy flutter velocity

requirements. In its simplest form we will formulate the program for a

cantilevered box beam, which consists of twelve variable parameters,

but could be extended to include any finite number of variables. In
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order to make the procedure systematic and more efficient the velocity

contours are approximated by a quadratic equation of the form,

n n n
v = A + E B.D. + E E C..D.D. (4-20)

i=1 I i=1 j=l j j

The coefficients A, B., and C.. could now be calculated at the
I IJ

known point using the following procedure: Taking the first derivative

of equation (4-20) with respect to some parameter Dh

n n
av = B + E CD. + C D (4-21)

D h j=l h i=l

and the second derivative with respect to a different parameter D is

2

aD h  D = Chg gh (4-22)
h g

Now assuming C hg=Cgh, the above equation yields
hg gh

2
C = 1 v (4-23)

hg 2 aD h aD

Substituting this in equation (4-21)

n n
B =av C D. - Z C D (4-23)

haD j=l i=l

or,

n
av

B = aD 2 E C Cih Di
h i=l Ih

Since C is symmetric, we have

n 2
Bh  a. aD D.. (4-24)

i=l h
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Again, equation (4-20) could be written

n n n

A = v - E B.D. - C..D.D.

j=l J i=1 j=1 'J J

Substituting values of B's and C's from (4-24) and (4-23) we have

n Av n 2 n n1 2v
A = v - E [--- E D.] D. - C E a D. D (4-25)

D DD, I 2' D.3D. i
j=1 .1=1 J j= 1=

The first and second derivatives of flutter velocity with respect

to the design parameters is given in (I,1), the coefficient's Chg, Bh'

and A are then calculated with the aid of equations (4-23 through

4-25). These coefficients are recomputed at the beginning of each

new design cycle.

COMPUTER PROCEDURE

A simplified flow diagram of the optimization procedure is

shown in Figure 2. Ev and m are the specified tolerances used to

compare the computed velocity v and the computed mass TMASS to the

desired velocity V and the previous mass TMASSI, respectively, at

various stages of the optimization procedure.

.Initial parameters are assumed, an initial velocity is computed

and is fitted to an assumed quadratic surface whose coefficients A,

Bh, and Chg are evaluated by the method described in the last section.

As shown in Figure 3, if the initial.velocity is not within

tolerance cv, and if v is greater than V, then the gradient mass

search is executed as shown from a to b. If instead, v is less than

V, as at point a', then the gradient velocity search a' to bV is
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executed. The gradient mass search reduces the mass, but may either

increase or decrease the velocity; the gradient velocity search

increases the velocity,

When the velocity is within tolerance C,v then a gradient pro-

jection search is executed along a constant mass hyperplane for example

from c to d. If any side constraints are encountered during the

search, the appropriate design parameters are set equal to their con-

straint value, and the search deviates from the constant mass hyper-

plane. If the computed velocity increases from its previous value,

the search is continued as shown in Figure 3 in an iterative fashion

until the flutter velocity reaches a maximum for that constant mass

hyperplane.

If a large number of side constraints become active, then the

projected gradient search will deviate greatly from the constant mass

hyperplane, At that stage the search fails and an alternate procedure

as shown in Figure 4 is employed. In this procedure, the gradient

velocity search and the gradient mass search are alternated in the

following manner. For the desired velocity V the gradient mass search

proceeds from a to b Fig. 4, now the desired velocity is changed to

1.2V and then utilizing the gradient velocity search, a step is made

from b to c. This procedure is repeated a number of times until the

change in mass (point 0) is within tolerance. The search is terminated

if the change in the mass for any cycle is less than some small pres-

cribed number.
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Figure 2 - Simplified Flow Diagram of Optimization Procedure

SSTART) LEGEND: v = computed velocity
V = desired velocity

READ INITIAL &v & & are numerical
PARAMETERS tolerances

COMPUTE INITIAL EXECUTE GRADIENT
VELOCITY v PROJECTION SEARCH

SYES YE OES
< YES . CYCLE V I SEARCH

TO0 NNOO

Y is V=V*1 .2

S V v EXECUTE GRADIENT
TMASS1-TMASS VELOCITY SEARCH

NO

COMPUTE COEFFICIENT EXECUTE GRADIEN
A, B,& TO MASS SEARCH

MAKE v-QUADRATIC

-VJ TMASS YES

YES I 0 YES
>V
10

EXECUTE GRADIENT _ EXECUTE GRADIENT
VELOCITY SEARCH MASS SEARCH

NO NO

i S O YES

+ INO

011 'P0011 Ixml:,
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m = Mass
v = Velocity
D = Parameter

V V = Desired Velocity
GM = Gradient Mass

Search
Di+I GV = Gradient velocity

Search
GP = Gradient Projectio-n

Search

,GV

V m

e b

D i

Figure 3 - Simplified Assumed Curves Representing

the Direction in which Different Search

Proceeds
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GM = Gradient Mass Search

G;V = Gradient Velocity Search

V = Desired Velocity

S+1I m = Mass

D = Parameter

incre .

0

crea

D i

Figure 4 - Alternate Search when Gradient

Projection Fails \



CHAPTER V

OPTIMIZATION OF A BOX BEAM

Figure 5 shows a three-bay box beam representing a uniform

cantilever aircraft wing structure. It is assumed, as stated in

Chapter I, that the wing geometry and shape have been fixed in advance.

Thus the height H, width W and length of each bay L are treated as

constants, these values could be different for each bay if necessary.

The design parameters for each bay are defined to be: (i) area of

longitudinals, (ii) front and back web, (iii) top and bottom web

thickness and (iv) rib thickness. These parameters were required to

be of uniform value for each bay. Since there are three bays, the

total number of variable design parameters is twelve. Other constant

parameters needed in the analysis are defined in Figure 5. With the

design parameters defined as above, the total mass to be minimized is

a linear function of the design parameters. Solution to the mathemati-

cal programming problem formulated in Chapter I is found for the box

beam described above.

A simplified flow diagram explaining the basic logic of the

optimization program developed, was explained in Chapter IV (Figure 2).

Each of the three gradient search routines calls a sub-routine which,

utilizing the established coefficients of the assumed quadratic, returns

the computed velocity and the partial derivatives of the velocity with

respect to the design parameters. In the flow diagram of Figure 2, v

and V are the computed and the desired velocities, respectively.

The aerodynamic matrix is formulated from the equation used by

Smilg and Wasserman (8,, p. 398).
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Rib
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Web
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a = 2.5", distance of elastic axis from the midchord

FIGURE 5. Rectangular Three-Bay Box Beam
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TADLE I INETL DESIGN ?,P-ETES CONSTRATTS

LEGE'KUD:

J = Num ber of bay; 1, 2, 3

D(J) =-Area of longitucinals for the jth bay

D(3+J) = Front and back web thickness for the jth bay

D(6+J) = Top and bottom skin thickness for the jth bay

D(9+J) = Rib thickness for the jth bay.

VARIABLE INITIAL CONST AINTS

DESIGN . ....

PAlE 'TERS VALUES UP ER L0 LTER

D(i), Sq. in. 0.01389 0.1389 0.O02315

D(2), Sq. in. 0.01319 0.1389 0.002315

D(3), Sq. in. 0.01389 0.1389 0.002315

D(4), in. 0. 00667 0.,o667 0.001111

D(5), in. 0.06667 0.06667 0.001111

D(6), in. o.oo006667 0.06667 0.001111

D(7), in. 0.003333 0.03333 0.000555

D(8), in. 0.003333 0.03333 0.000555

uy), in. 0.003333 0.03333 0.000555

D(10), in. 0. 003333 0.03333 0.000555

D(11), in. 0.00333 0.03333 0.000555

D(12), in. 0.003333 0.03333 0.000555

ORIGNA PAG 'S
OF pOOR QUAXM
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TABLE II. RESULTS OF FLUTT-I OPTI'IZATION

LEGEND:

J = Number of bay; 1, 2, 3

D(J) = Area of longitucLinals for the jth bay

D(3+J) = Front and back web thickness for the jth bay

D(6+J) = Top and bottom skin thickness for tie jth bay

D(9+J) = Rib thickness for the jth bay

VARIABLE
ENITIAL FINAL

DESIGN
VALUES VALUES

PAIRAI TERS

D(1), Sq. in. 0.01389 0.002554

D(2), Sq. in. 0.01389 0.002315"

D(3), Sq. in. 0.01389 0.002315"

D(14), in. 0.006667 0.0010il

D(5), in. 0.006667 0.001476

D(6), in. 0.006667 0.001111"

D(7), in. 0.003333 0.000555

D(8), in. 0.003333 0;000,296

D(9), in. 0.003333 0.0005988

D(10), in. 0.003333 0.001232

D(11), in. 0.003333 0.001032

D(12), in. 0.003333 0.001130

VELOCITY,

FEET PER SECOND b70.1 747.3

IMASS,

SLUGS 6.099 1.098

*Parameter eaual to the lower constraint
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The three gradient search procedures developed use partial

derivatives of total mass and also the first and second partials of

velocity with respect to the design parameters. When the total mass

is a linear function of the design parameters, the partial derivatives

of the total mass are constant and need to be evaluated only once. If

the total mass is not a linear function of the parameters, they could

be easily evaluated at each step in the design space. The partial

derivatives of the flutter velocity are computed as shown in

reference (1 ,).

The initial variable parameters used for the box beam, and the

upper and lower side constraints are given in Table I.

The total mass of the beam and the flutter velocity versus the

number of redesign cycles are plotted in Figure 6. The desired flutter

velocity was specified as 800 feet per second. The design was started

with an initial velocity of 870.1 feet per second and a mass of

6.099 slug (a, Fig. 6). The velocity was first decreased utilizing

the gradient mass search, and then increased by the gradient projection

search, holding mass constant. These two steps were again repeated but

the gradient projection search failed. An alternate procedure as

described in Chapter IV (Figure 4) was used, and the cycleterminated

due to no change in mass (b, Fig. 6). The second cycle started with an

initial velocity of 388 feet per second. The gradient velocity search

was used for step one and then the search iterated between the gradient

projection and the gradient mass search, but did not converge in the

maximum number of allowed steps. Starting with a velocity of 724 feet
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per second and utilizing all three searches it converged to the mass

of 1.047 slugs and a velocity of 770.8 feet per second (d, Fig 6),

indicating that the program had probably produced nearly a local

optimum. Three more cycles were carried out with a very small change

in mass, until finally the search terminated at a velocity of 743.7

feet per second and a mass of 1.098 slugs. Thus a local optimum was

reached in six cycles, giving the best results so far.

The flutter velocity was computed by solving the complex eigen-

value problem expressed in the fundamental flutter equation (1). A

computer program for solving the complex eigenvalue problem was obtained

from the Natibnal Aeronautics and Space Administration.

Table II shows the results of the optimization study and lists

the initial and the final design parameters and the corresponding

mass and velocity.

An IBM 370, Model 155 computer at the Clemson University Computer

Center was used. The total execution time, as recorded by the central

processing unit (CPU) was 112 seconds for 6 redesign cycles carried out

by one computer run. Comparing it with a previous search which took

123 seconds, there is not much saving in time, but this procedure may

be much more efficient when used with system which has a much larger

number of parameters and degrees of freedom.
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CONCLUSIONS

The quadratic curve fitting for the velocity hypersurface is the

important feature of this work. The time required for optimizing the

cantilevered box beam by the method developed here is less than the

previous method.

The optimization scheme used is based on three simple gradient

search techniques, this search have been modified so as to estimate

step size in case of overshoot. The scheme could be extended to

include other behavioral constraints such as stresses, displacements,

and buckling. Since it did result in substantial improvement for a

system with 12 design variables, the author feels that it is reasonable

to expect that this scheme would at least work with a similar degree

of success for a system with larger number of design variables, and in

fact, might be more efficient.

Also, there is much room for innovation in the use of search

schemes which apply other available gradient search methods or their

combinations to the problems of this nature.
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